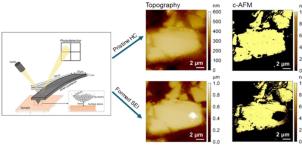
Park NX10 Atomic Force Microscope



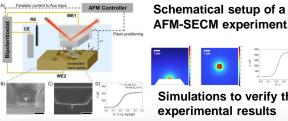
Description

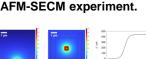
Atomic Force Microscopy (AFM) is a high-resolution technique for characterizing material surfaces at the nanoscale.

- Operates by scanning a probe over the sample to measure forces, generating topographical, mechanical, and electrical property maps, a cantilever acts as a force sensitive spring
- Investigates surface morphology and phase distribution; tracks degradation mechanisms over charge/discharge cycles; Assesses mechanical stability and structural changes
- Can be equipped with current amplifier, Lock-in amplifiers, potentiostats and thus, can be hyphenated with different techniques

The local formation of SEI on hard carbon is demonstrated by scanning electrochemical cell microscopy (SECCM). The formation of SEI microspots allows the direct study of the effects of the electrolyte composition and experimental parameters on the morphology, height, passivation and nanomechanical properties of the SEI using an SPM instrument, capable of switching the scan head from SECCM to AFM.

Specifications


Local measurements of properties in Araon atmosphere or in liquids, e.g.:


- Conductivity at dry conditions (C AFM)
- Faradaic current (SECM, SICM, SECCM)
- Mechanic properties (PinPoint)
- Surface Potential/Workfunction (KPFM)

Scan range: 80 x 80 µm

Z range: 10 µm

Sample size: up to 100 mm x 100 mm, d = 20 mm

Simulations to verify the experimental results

Further information

Electrical properties	Mechanical properties	Other properties
 EFM/KPFM Localized charge, Surface potential, Work function CAFM Current, Conductivity PFM Piezoelectric response SSRM (Spread) Resistance SCM Capacitance PCM Photocurrent 	 FD curve Modulus, Adhesion value PinPoint mode Modulus, Adhesion value and image FMM Relative mechanical property Nanoindentation Modulus, Hardness LFM Lateral force Nanolithography Surface modification 	MFM Magnetic property SThM Thermal property EC-AFM Height change by EC response AFM-SECM Electrochemical activity Pipette based
		SICM Height image without surface contact, lon current SECCM Localized EC response SICM-SECM Height, EC response

Publications

- [1] S. Daboss, T. Philipp, K. Palanisamy, J. Flowers, H. S. Stein, C. Kranz, Electrochim. Acta 2023, 453, 142345.
- [2] S. Daboss, F. Rahmanian, H. S. Stein, C. Kranz, Electrochem. Sci. Adv. 2022, 2, 1–10.
- [3] S. Saleh, S. Daboss, T. Philipp, D. Schaefer, M. Rohnke, C. Kranz, ChemElectroChem 2025, e202400707.
- [4] S. Daboss, N. Franke, B. Fraboni, C. Kranz, T. Cramer, J. Microsc. 2025, accepted.

POLiS - Joint Cluster of Excellence of KIT & Ulm University with Associated Partners JLU Giessen & ZSW

